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The effect of two-phasality and of thermal nonsteadiness on the characteristics 
of a stream of gaseous suspension is analyzed on the basis of the solution to 
integral equations of energy and momentum. 

We consider nonsteady flow of a two-phase stream (gas + solid particles) in the initial 
segment and in the core segment of a pipe. The profiles of velocity and concentration at the 
channel entrance are assumed to be uniform and axisymmetric. At the entrance already there 
begin to form along the channel wall a thermal boundary layer and a dynamic one. With in- 
creasing distance from the entrance, the thicknesses of both boundary layers increase until 
they become equal to the pipe radius. The distance from the channel entrance where this 
occurs will be called the length of the initial segment or of the stabilization zone. The 
stream through the initial segment consists of a potential core and a boundary layer. The 
stagnation parameters P*, T* and the concentration of solid particles in the potential core 
remain constant and the same as at the channel entrance. The turbulence induced by the 
stream can change with acceleration or retardation of the gas, or as a result of any other 
external action. We will assume a turbulent flow throughout the entire channel space. 

With no mass transfer between carrier phase and suspended phase taking place, the sys- 
tems of equations for the gas and for the solid particles can be written separately [1-3]: 
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for the particles. 

The integral method of solution and analysis, with appropriate transformation of Eqs. 
(1)-(3), yields the transient-state energy and momentum relations for the flow of a noniso- 
thermal and nonsteady, in the hydromechanical sense (Omo/Ot=/=O) as well as in the thermal 
sense (Oh0/Ot:/:0; Ohw/Ot=/:O) two-phase gas stream through a pipe [4]. In the absence of such 
perturbing factors, these relations become the well-known steady-state ones derived else- 
where [5, 6], 

We will consider the situation where the flow rate of gas through the channel remains 
constant and transiency is produced solely by variation of the temperatures of the stream 
core and of the streamlined surface: G = const, T w = var, and T* = var. Despite the con- 
stant flow rate, the velocity at the channel entrance will vary in time because of variation 
of the density, indeed, G= const implies also a constant mass velocity po~wol. As the tem- 
perature of the stream core T* varies in time, so does the density Po~ and thus also the ve- 
locity. With 3T~r being the rate of change of temperature at the entrance, the time de- 
rivative of velocity is 
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Inserting expression (7) into Eq. (4) and the integral relations for momentum and energy, we 
obtain the final equation of motion 
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The system of Eqs. (8)'(10) will be closed with expressions for the form factor H = 
@*/@**, the friction coefficient, the heat transfer coefficient, the relative velocity 
wo--Ws, and the relative temperature To--Ts(t) [4] 
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Fig. i. Variation of kinematic, 
integral, and thermal charac- 
terintics along initial segment 

(NReoi = 75,000, @h = 0.47): i) 
steady flow; 2, 3, 4) dTw/dt = 
230 K/sec; 3, 4) dT~/dt =1.35-104 
K/sec; 4) ~ = 10 -4 . 
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The graph in Fig. i depicts the results of calculations, in four variants, based on Eqs. 
(8)-(10). The input parameters in the first variant are X = 0, NRe, i = 75,000, W0 = I, 
4HNR^/NRe = 0.0007, @h = 0.47, dTo/dt = 0, and dTw/dt = 0, corresponding to conventional 
stea~y nonisothermal flow in the initial pipe segment. A comparison of these results with 
those of other studies [7, 8] reveals a satisfactory agreement. Such a comparison had to be 
made, because in those other studies the energy equation was integrated assuming equal fourth 
roots of the Reynolds numbers based on energy thickness and momentum thickness respectively. 
The system of equations in this study was integrated by the Runge--Kutta method for given ini- 
tial conditions. 

The input parameters in the second variant were the same, except the time derivative of 
the wall temperature dTw/dt = 230 K/sec. 

This variant thus represents the situation of an instantaneous change in heat load or in 
flow pattern with T~ = const and T w = var in time. 
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The results of calculations for this variant are depicted in Fig. 1 by curves 2. Evi- 
dently heating the surface under transient conditions causes the dimensionless group 4HN[:/NRe 
to decrease below its steady-state value. This is attributable to the way in which the 
boundary layer responds to thermal transiency. Heating the streamlined surface causes the 
density profile to become more uniform and the dimensionless group 4HNRe/NRe to increase, but 
the thickness of the boundary layer will decrease more rapidly so that the displacement thick- 
ness 24"/ro also decreases. Despite that, however, the velocity in the potential stream is 
somewhat higher and this is related to an increase of the friction coefficient, inasmuch as 
to a smaller N~ corresponds a larger Cf (Eq. (8)). 

The values of the Reynolds number NRe* ~ for the thermal boundary layer are almost the 
same at a given level of the logarithm of the derlvatlve of the surface temperature wlth re- 
spect to time and given level of the enthalpy factor. This has been confirmed by the results 
of experimental studies on heat transfer [9]. 

In the third variant it has been assumed that the time derivative of the temperature in 
the stream core is not zero, with all other parameters the same as in the second variant. 
The emergence of this derivative is equivalent to acceleration of the stream at the channel 
entrance and to a transient velocity gradient as an added prior influencing factor. The 
analogy to a negative longitudinal pressure gradient suggests that transient acceleration 
should suppress the boundary layer and decrease the enthalpy factor and, as a consequence, 
also decrease the displacement thickness. This trend is, indeed, noted on the center graph 
in Fig. i. The larger increase of velocity in the potential core (center graph) is solely 
due to change in density, because, according to the equation of continuity, a change in ve- 
locity is associated not only with the evolution of the displacement thickness 2~*/ro but 
also with the time derivative density: 
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As the heat load increases (dT~/dt >0)~ the velocity will increase faster. When dT~/dt < O, 
then the relative velocity is lower than in the steady state. 

When the velocity profile of the dynamic boundary layer changes, then an increase of the 
Reynolds number in the thermal boundary layer is due to a more profound distortion of the 
density and temperature profile causing an additional increase of N ** Re,h" 

Finally, the fourth variant corresponds to a two-phase stream with solid particles un- 
derheated (Ts/To~ 0.97) and 10% slower. Their volume concentration in the stream has been 
assumed here to be ~ = i0 -~. 

It has been established that the given parameters characterizing two-phasality do not 
contribute significantly to the increase or decrease by a few percent of kinematic, thermal, 
and integral characteristics relative to those in the third variant. The results of these 
calculations indicate, however, the trend of the effect of two-phasality. 

NOTATION 

c~ specific heat; Cf, friction coefficient; D, channel diameter; ds, diameter of solid 
particles; g, acceleration of gravity; h, enthalpy; RNu , Nusselt number; P, pressure; NPr, 
Prandtl number; q, thermal flux density; r, radius; NRe , Reynolds number; NSt, Stanton num- 
ber; t, time; T, temperature; w, velocity; Wo =-wo/wol, relative velocity; x, longitudinal 
coordinate; X = x/D, referred longitudinal coordinate; y, transverse coordinate; 8, volzLme 
concentration of solid particles; 6*, displacement thickness; 6**, momentum thickness; 6[*, 
energy thickness; J , dimensionless temperature; %, thermal conductivity; p, dynamic viscosity; 
p~ density; T, shearing stress; ~h, enthalpy factor; superscript * refers to stagnation; sub- 
scripts h refers to the thermal boundary layer, w refers to the wall (surface), 0 refers to 
the region outside the boundary layer; 01 refers to channel entrance, x refers to the 
longitudinal coordinate, r refers to the radial coordinate, and s refers to the solid phase. 
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UNIVERSAL EQUATION OF TRANSIENT PLANE JET IN CONCURRENT STREAM 

O. N. Bushmarin, E. Yu. Egorova, 
and N. F. Trubitsyn 
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An equation is derived and subsequently integrated which is "universal" not only 
with respect to velocity of the concurrent stream and initial conditions of jet 
discharge but also with respect to choice of characteristic scale for the trans- 
verse coordinate. 

A universal equation for a transient laminar jet and a transient gradiental concurrent 
stream of incompressible fluid has been derived in an earlier study [I] without the use of 
any integral relations, i.e., in purely differential form. We will now write this equation 
and the boundary conditions for the dimensionless flow function ~ in the form 
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